
Università Telematica Pegaso LogoImage not found or type unknown

PROGRAMMA DEL CORSO DI INGEGNERIA DEL SOFTWARE

SETTORE SCIENTIFICO

ING-INF/05

CFU

12

OBIETTIVI FORMATIVI PER IL RAGGIUNGIMENTO DEI RISULTATI DI APPRENDIMENTO PREVISTI NELLA
SCHEDA SUA

/**/
Il corso di Ingegneria del Software mira a fornire agli studenti una comprensione approfondita dei processi, metodi e
strumenti per lo sviluppo di sistemi software complessi.

Gli obiettivi principali includono:

Acquisire una visione globale dei processi e dei modelli di sviluppo software: Comprendere i diversi cicli di vita del
software, inclusi i modelli tradizionali e agili, e saperli applicare in contesti pratici per gestire progetti software in modo
efficiente. Utilizzare strumenti di modellazione per la progettazione e la documentazione del software: Applicare il
linguaggio UML per rappresentare e comunicare in modo formale le strutture e i comportamenti del sistema, facilitando
la progettazione e la collaborazione nel team di sviluppo. Gestire l’analisi e la specifica dei requisiti: Raccogliere,
analizzare e formalizzare i requisiti funzionali e non funzionali, assicurando che il prodotto software soddisfi le esigenze
degli utenti e degli stakeholder. Progettare architetture software efficienti e scalabili: Sviluppare soluzioni architetturali
di alto livello, con particolare attenzione alla decomposizione del sistema, gestione dei dati e sicurezza, per garantire
affidabilità e manutenibilità del software. Assicurare la qualità del software attraverso tecniche di testing e verifica:
Imparare a pianificare ed eseguire test efficaci a diversi livelli, utilizzando strumenti automatizzati per garantire la
correttezza, l'integrazione e le prestazioni del sistema software.

RISULTATI DI APPRENDIMENTO ATTESI

/**/
- Conoscenza e capacità di comprensione

Capacità di comprendere i principi fondamentali dell'ingegneria del software, inclusi i diversi modelli di sviluppo e cicli
di vita, per gestire progetti software complessi in modo efficace (Obiettivo 1).
Comprensione approfondita dei principali strumenti e tecniche di modellazione, in particolare l'uso del linguaggio UML,
per rappresentare strutture e comportamenti del sistema in maniera formale e accurata (Obiettivo 2).
Conoscenza delle metodologie per l'analisi e la specifica dei requisiti, con particolare attenzione alla raccolta e
formalizzazione dei requisiti funzionali e non funzionali (Obiettivo 3).
Capacità di progettare architetture software efficienti e scalabili, applicando principi di decomposizione del sistema e
gestione della sicurezza e dei dati persistenti (Obiettivo 4).

Comprensione delle tecniche di testing e verifica, inclusi test di unità, integrazione e accettazione, per garantire la
qualità e la robustezza del software (Obiettivo 5).

- Capacità di applicare conoscenza e comprensione
Progettare e implementare soluzioni software basate su diversi modelli di sviluppo, selezionando il ciclo di vita più
appropriato in base alle esigenze del progetto (Obiettivo 1).
Utilizzare UML per modellare vari aspetti di un sistema software, inclusi diagrammi delle classi, di sequenza e di stato,
per facilitare la progettazione e la documentazione del software (Obiettivo 2).
Applicare tecniche di raccolta e specifica dei requisiti per tradurre le esigenze degli stakeholder in specifiche funzionali
e non funzionali dettagliate (Obiettivo 3).
Progettare architetture software scalabili e modulari, integrando soluzioni per la gestione della sicurezza, dei dati
persistenti e delle condizioni limite (Obiettivo 4).
Sviluppare piani di test e utilizzare strumenti automatizzati per eseguire test unitari, di integrazione e di sistema,
garantendo l'affidabilità e la qualità del software (Obiettivo 5).

- Autonomia di giudizio
Valutare in modo critico l'adeguatezza di diversi modelli di sviluppo software rispetto alle caratteristiche del progetto,
come dimensione e complessità (Obiettivo 1).
Autonomia nel giudicare l'efficacia delle soluzioni di modellazione adottate tramite UML per garantire la coerenza e la
manutenibilità del sistema (Obiettivo 2).
Capacità di valutare la completezza e la correttezza dei requisiti raccolti, identificando eventuali ambiguità o conflitti
(Obiettivo 3).
Capacità di giudicare la solidità e la scalabilità delle architetture software progettate, analizzando la loro manutenibilità
e sicurezza (Obiettivo 4).
Autonomia nel valutare l'efficacia dei processi di testing e nel proporre miglioramenti per ottimizzare la qualità del
software (Obiettivo 5).

- Abilità comunicative
Capacità di spiegare in modo chiaro e coerente le diverse fasi del ciclo di vita del software e le loro implicazioni
tecniche a un pubblico sia tecnico che non tecnico (Obiettivo 1).
Abilità nel presentare e discutere modelli UML complessi, comunicando in modo efficace le scelte di progettazione e la
logica del sistema (Obiettivo 2).
Capacità di comunicare i requisiti del software e le relative priorità agli stakeholder, garantendo una comprensione
condivisa degli obiettivi del progetto (Obiettivo 3).
Capacità di spiegare architetture software avanzate e le loro implicazioni tecniche in termini di prestazioni, sicurezza e
scalabilità (Obiettivo 4).

- Capacità di apprendimento
Capacità di aggiornarsi costantemente sui nuovi modelli di sviluppo e sulle metodologie emergenti nell'ingegneria del
software, come DevOps e CI/CD (Obiettivo 1).
Sviluppare competenze di autoapprendimento per approfondire nuove tecniche di modellazione e design pattern,
mantenendo la capacità di applicare le migliori pratiche nella progettazione del software (Obiettivo 2).
Capacità di apprendere in autonomia strumenti e tecniche per l'analisi e la gestione dei requisiti, con particolare
attenzione ai requisiti non funzionali (Obiettivo 3).
Impegno continuo nell'acquisire nuove competenze di testing e verifica del software, comprendendo l'evoluzione degli
strumenti e delle tecniche di automazione (Obiettivo 5).

PREREQUISITI

/**/

 Nessuno.

PROGRAMMA DIDATTICO: ELENCO VIDEOLEZIONI/MODULI

/**/ Introduzione ai processi software Sviluppo Agile Introduzione al ciclo di vita del software Sviluppo dei processi del
ciclo di vita Modelli di ciclo di vita del software Introduzione alla modellazione Diagrammi delle classi e degli oggetti
Diagrammi di sequenza Diagrammi di package e di deployment Casi d’uso Diagrammi di macchina a stati Diagrammi
di attività Comunicazione, strutture e componenti Collaborazione, interazione generale e temporizzazione Elicitazione
dei requisiti: Introduzione e concetti chiave Elicitazione dei requisiti: Attività principali Gestione del processo di specifica
dei requisiti Analisi dei requisiti e modellazione a oggetti Attività principali dell’analisi dei requisiti Gestione del
processo di analisi dei requisiti Progettazione di interfacce grafiche Introduzione al system design System Design:
concetti principali System Design: Dagli oggetti ai sottosistemi System Design: Obiettivi di progettazione Gestione del
processo di system design Introduzione all’object design Specifica delle interfacce: concetti generali Attività della
specifica delle interfacce Gestione del processo di object design Mapping tra modelli e codice Introduzione al testing
Attività di testing Gestione del processo di testing Tecniche per la selezione dei casi di test Testing white box Test-
Driven-Development Introduzione a Software Project Management Risk Management Quality Management Introduzione
a Rationale Management Rationale Management: dai problemi alle decisioni Configuration Management People
management Strumenti di collaborazione Strutture di collaborazione e cenni su community smells Didattica Innovativa:
intervista a professore ordinario di Ingegneria del Software Didattica Innovativa: intervista a Senior Product Engineer
Storia, principi e sintassi del linguaggio Java Tipi primitivi, selezione e iterazione JDK e JRE: compilare ed eseguire
programmi in Java Classi, oggetti, ereditarietà Polimorfismo, interfacce e classi astratte Accesso ai dati con JDBC e
MySQL Introduzione ai design pattern Caso studio: design pattern Composite e Strategy Caso studio: design pattern
Decorator Caso studio: design pattern Abstract Factory, Singleton e Bridge

AGENDA

/**/
Le attività di Didattica Interattiva (TEL-DI) consistono, per ciascun CFU, in 2 ore erogate in modalità sincrona su
piattaforma Class, svolte dal docente anche con il supporto del tutor disciplinare, e dedicate a una o più tra le seguenti
tipologie di attività:

sessioni live, in cui il docente guida attività applicative, stimolando la riflessione critica e il confronto diretto con gli
studenti tramite domande in tempo reale e discussioni collaborative; webinar interattivi, arricchiti da sondaggi e
domande dal vivo, per favorire il coinvolgimento attivo e la costruzione della conoscenza; lavori di gruppo e discussioni
in tempo reale, organizzati attraverso strumenti collaborativi come le breakout rooms, per sviluppare strategie di
problem solving e il lavoro in team; laboratori virtuali collettivi, in cui il docente guida esperimenti, attività pratiche o
l’analisi di casi di studio, rendendo l’apprendimento un’esperienza concreta e partecipativa; Tali attività potranno
essere eventualmente supportate da strumenti asincroni di interazione come per esempio: forum; wiki; quiz; glossario.

Si prevede l’organizzazione di almeno due edizioni di didattica interattiva sincrona nel corso dell’anno accademico. Si
precisa che il ricevimento degli studenti, anche per le tesi di laurea, non rientra nel computo della didattica interattiva.

ATTIVITÀ DIDATTICA EROGATIVA (DE)

/**/

Le attività di Didattica Erogativa consistono, per ciascun CFU, nell'erogazione di 5 videolezioni della durata di circa 30
minuti. A ciascuna lezione sono associati:

una dispensa (PDF) di supporto alla videolezione oppure l’indicazione di capitoli o paragrafi di un ebook di riferimento,
scelto dal docente tra quelli liberamente consultabili in piattaforma da studentesse e studenti; un questionario a
risposta multipla per l’autoverifica dell’apprendimento.

TESTO CONSIGLIATO

/**/
Ingegneria del Software, 10 ed. Ian Sommerville, Pearson

UML DIstilled, 4 ed. Martin Fowler, Pearson
Applicare UML e Pattern - analisi e programmazione orientata a oggetti 5 ed. Craig Larman, Pearson.
Introduzione all’ingegneria del software moderna. Ian Sommerville, Daniela Micucci, Pearson
Cay Horstmann, “Concetti di Informatica e Fondamenti di Java”, Settima Edizione, Apogeo Education, Maggioli Editore,
2020.

Si specifica che i testi consigliati sono solo per approfondimento volontario, e che essi non saranno oggetto specifico di
esame, essendo il modello didattico basato sull’utilizzo delle dispense del docente, soprattutto per la verifica in sede di
esame.

MODALITÀ DI VERIFICA DELL’APPRENDIMENTO

/**/
L’esame può essere sostenuto sia in forma scritta che in forma orale. L’esame orale consiste in un colloquio con la
Commissione sui contenuti dell’insegnamento. L’esame in forma scritta consiste nello svolgimento di un test composto
da 31 domande. Per ogni domanda lo studente deve scegliere una delle 4 possibili risposte. Solo una risposta è corretta
e, in caso di risposte errate o mancanti, non sarà attribuita alcuna penalità. Rispondendo correttamente a tutte le 31
domande, si conseguirà la lode.

Oltre alla prova d’esame finale, il percorso prevede attività di didattica interattiva sincrona e prove intermedie che
consentono alle studentesse e agli studenti di monitorare il proprio apprendimento, attraverso momenti di verifica
progressiva e consolidamento delle conoscenze.
La partecipazione alle attività di didattica interattiva sincrona consente di maturare una premialità fino a 2 punti sul
voto finale, attribuiti in funzione della qualità della partecipazione alle attività e dell’esito delle prove.
Per accedere alle prove intermedie è necessario aver seguito almeno il 50% di ogni ora di didattica interattiva. Le prove
intermedie possono consistere in un test di fine lezione o nella predisposizione di un elaborato. Le prove intermedie si
considerano superate avendo risposto correttamente ad almeno l’80% delle domande di fine lezione.
In caso di prove intermedie che prevedano la redazione di un elaborato, il superamento delle stesse ai fini della
premialità sarà giudicata dal docente titolare dell’insegnamento. I punti di premialità, previsti per le prove intermedie,
sono sommati al voto finale d’esame solo se la prova d’esame è superata con un punteggio pari ad almeno 18/30 e
possono contribuire al conseguimento della lode.
Le modalità d’esame descritte sono progettate per valutare il grado di comprensione delle nozioni teoriche e la
capacità di applicazione delle stesse e consentiranno di valutare il livello di competenza e l’autonomia di giudizio

maturati dalla studentessa e dallo studente. Le abilità di comunicazione e la capacità di apprendimento saranno
valutate anche attraverso le interazioni dirette che avranno luogo durante la fruizione dell’insegnamento.

RECAPITI

/**/
roberto.vergallo@unipegaso.it

fabiano.pecorelli@unipegaso.it

massimiliano.pirani@unipegaso.it

OBBLIGO DI FREQUENZA

/**/
A studentesse e studenti viene richiesto di partecipare ad almeno il 70% dell’attività di didattica erogativa (70% della
TEL-DE).

AGENDA

/**/
Nella sezione Informazioni Appelli, nella home del corso, per ogni anno accademico vengono fornite le date degli appelli
d’esame.

Le attività di didattica interattiva sincrona sono calendarizzate in piattaforma nella sezione Class.

Le attività di ricevimento di studenti e studentesse sono calendarizzate nella sezione Ricevimento Online.

CALENDARIO

/**/
 Calendario lezioni sincrone 2a edizione 2026:

Massimiliano Pirani UML: Diagrammi strutturali 04/02/2026 Ore 17.00 UML: Diagrammi comportamentali 04/02/2025
Ore 18.00

