Wniyernsitsolelematica PegasoLogo

PROGRAMMA DEL CORSO DI INGEGNERIA DEL SOFTWARE

SETTORE SCIENTIFICO

ING-INF/05

CFU

12

OBIETTIVI FORMATIVI PER IL RAGGIUNGIMENTO DEI RISULTATI DI APPRENDIMENTO PREVISTI NELLA
SCHEDA SUA

¥/
Il corso di Ingegneria del Software mira a fornire agli studenti una comprensione approfondita dei processi, metodi e
strumenti per lo sviluppo di sistemi software complessi.

Gli obiettivi principali includono:

Acquisire una visione globale dei processi e dei modelli di sviluppo software: Comprendere i diversi cicli di vita del
software, inclusi i modelli tradizionali e agili, e saperli applicare in contesti pratici per gestire progetti software in modo
efficiente. Utilizzare strumenti di modellazione per la progettazione e la documentazione del software: Applicare il
linguaggio UML per rappresentare e comunicare in modo formale le strutture e i comportamenti del sistema, facilitando
la progettazione e la collaborazione nel team di sviluppo. Gestire I’analisi e la specifica dei requisiti: Raccogliere,
analizzare e formalizzare i requisiti funzionali e non funzionali, assicurando che il prodotto software soddisfi le esigenze
degli utenti e degli stakeholder. Progettare architetture software efficienti e scalabili: Sviluppare soluzioni architetturali
di alto livello, con particolare attenzione alla decomposizione del sistema, gestione dei dati e sicurezza, per garantire
affidabilita e manutenibilita del software. Assicurare la qualita del software attraverso tecniche di testing e verifica:
Imparare a pianificare ed eseguire test efficaci a diversi livelli, utilizzando strumenti automatizzati per garantire la
correttezza, l'integrazione e le prestazioni del sistema software.

RISULTATI DI APPRENDIMENTO ATTESI

'
- Conoscenza e capacita di comprensione

Capacita di comprendere i principi fondamentali dell'ingegneria del software, inclusi i diversi modelli di sviluppo e cicli
di vita, per gestire progetti software complessi in modo efficace (Obiettivo 1).

Comprensione approfondita dei principali strumenti e tecniche di modellazione, in particolare I'uso del linguaggio UML,
per rappresentare strutture e comportamenti del sistema in maniera formale e accurata (Obiettivo 2).

Conoscenza delle metodologie per I'analisi e la specifica dei requisiti, con particolare attenzione alla raccolta e
formalizzazione dei requisiti funzionali e non funzionali (Obiettivo 3).

Capacita di progettare architetture software efficienti e scalabili, applicando principi di decomposizione del sistema e
gestione della sicurezza e dei dati persistenti (Obiettivo 4).

Comprensione delle tecniche di testing e verifica, inclusi test di unita, integrazione e accettazione, per garantire la
qualita e la robustezza del software (Obiettivo 5).

- Capacita di applicare conoscenza e comprensione
Progettare e implementare soluzioni software basate su diversi modelli di sviluppo, selezionando il ciclo di vita piu
appropriato in base alle esigenze del progetto (Obiettivo 1).
Utilizzare UML per modellare vari aspetti di un sistema software, inclusi diagrammi delle classi, di sequenza e di stato,
per facilitare la progettazione e la documentazione del software (Obiettivo 2).
Applicare tecniche di raccolta e specifica dei requisiti per tradurre le esigenze degli stakeholder in specifiche funzionali
e non funzionali dettagliate (Obiettivo 3).
Progettare architetture software scalabili e modulari, integrando soluzioni per la gestione della sicurezza, dei dati
persistenti e delle condizioni limite (Obiettivo 4).
Sviluppare piani di test e utilizzare strumenti automatizzati per eseguire test unitari, di integrazione e di sistema,
garantendo I'affidabilita e la qualita del software (Obiettivo 5).

- Autonomia di giudizio
Valutare in modo critico I'adeguatezza di diversi modelli di sviluppo software rispetto alle caratteristiche del progetto,
come dimensione e complessita (Obiettivo 1).
Autonomia nel giudicare I'efficacia delle soluzioni di modellazione adottate tramite UML per garantire la coerenza e la
manutenibilita del sistema (Obiettivo 2).
Capacita di valutare la completezza e la correttezza dei requisiti raccolti, identificando eventuali ambiguita o conflitti
(Obiettivo 3).
Capacita di giudicare la solidita e la scalabilita delle architetture software progettate, analizzando la loro manutenibilita
e sicurezza (Obiettivo 4).
Autonomia nel valutare I'efficacia dei processi di testing e nel proporre miglioramenti per ottimizzare la qualita del
software (Obiettivo 5).

- Abilita comunicative
Capacita di spiegare in modo chiaro e coerente le diverse fasi del ciclo di vita del software e le loro implicazioni
tecniche a un pubblico sia tecnico che non tecnico (Obiettivo 1).
Abilita nel presentare e discutere modelli UML complessi, comunicando in modo efficace le scelte di progettazione e la
logica del sistema (Obiettivo 2).
Capacita di comunicare i requisiti del software e le relative priorita agli stakeholder, garantendo una comprensione
condivisa degli obiettivi del progetto (Obiettivo 3).
Capacita di spiegare architetture software avanzate e le loro implicazioni tecniche in termini di prestazioni, sicurezza e
scalabilita (Obiettivo 4).

- Capacita di apprendimento
Capacita di aggiornarsi costantemente sui nuovi modelli di sviluppo e sulle metodologie emergenti nell'ingegneria del
software, come DevOps e CI/CD (Obiettivo 1).
Sviluppare competenze di autoapprendimento per approfondire nuove tecniche di modellazione e design pattern,
mantenendo la capacita di applicare le migliori pratiche nella progettazione del software (Obiettivo 2).
Capacita di apprendere in autonomia strumenti e tecniche per I'analisi e la gestione dei requisiti, con particolare
attenzione ai requisiti non funzionali (Obiettivo 3).
Impegno continuo nell'acquisire nuove competenze di testing e verifica del software, comprendendo I'evoluzione degli
strumenti e delle tecniche di automazione (Obiettivo 5).

PREREQUISITI

1

Nessuno.

PROGRAMMA DIDATTICO: ELENCO VIDEOLEZIONI/MODULI

/**[Introduzione ai processi software Sviluppo Agile Introduzione al ciclo di vita del software Sviluppo dei processi del
ciclo di vita Modelli di ciclo di vita del software Introduzione alla modellazione Diagrammi delle classi e degli oggetti
Diagrammi di sequenza Diagrammi di package e di deployment Casi d’'uso Diagrammi di macchina a stati Diagrammi
di attivita Comunicazione, strutture e componenti Collaborazione, interazione generale e temporizzazione Elicitazione
dei requisiti: Introduzione e concetti chiave Elicitazione dei requisiti: Attivita principali Gestione del processo di specifica
dei requisiti Analisi dei requisiti e modellazione a oggetti Attivita principali dell’analisi dei requisiti Gestione del
processo di analisi dei requisiti Progettazione di interfacce grafiche Introduzione al system design System Design:
concetti principali System Design: Dagli oggetti ai sottosistemi System Design: Obiettivi di progettazione Gestione del
processo di system design Introduzione all’object design Specifica delle interfacce: concetti generali Attivita della
specifica delle interfacce Gestione del processo di object design Mapping tra modelli e codice Introduzione al testing
Attivita di testing Gestione del processo di testing Tecniche per la selezione dei casi di test Testing white box Test-
Driven-Development Introduzione a Software Project Management Risk Management Quality Management Introduzione
a Rationale Management Rationale Management: dai problemi alle decisioni Configuration Management People
management Strumenti di collaborazione Strutture di collaborazione e cenni su community smells Didattica Innovativa:
intervista a professore ordinario di Ingegneria del Software Didattica Innovativa: intervista a Senior Product Engineer
Storia, principi e sintassi del linguaggio Java Tipi primitivi, selezione e iterazione DK e JRE: compilare ed eseguire
programmi in Java Classi, oggetti, ereditarieta Polimorfismo, interfacce e classi astratte Accesso ai dati con JDBC e
MySQL Introduzione ai design pattern Caso studio: design pattern Composite e Strategy Caso studio: design pattern
Decorator Caso studio: design pattern Abstract Factory, Singleton e Bridge

AGENDA

1**/

Le attivita di Didattica Interattiva (TEL-DI) consistono, per ciascun CFU, in 2 ore erogate in modalita sincrona su
piattaforma Class, svolte dal docente anche con il supporto del tutor disciplinare, e dedicate a una o piu tra le seguenti
tipologie di attivita:

sessioni live, in cui il docente guida attivita applicative, stimolando la riflessione critica e il confronto diretto con gli
studenti tramite domande in tempo reale e discussioni collaborative; webinar interattivi, arricchiti da sondaggi e
domande dal vivo, per favorire il coinvolgimento attivo e la costruzione della conoscenza; lavori di gruppo e discussioni
in tempo reale, organizzati attraverso strumenti collaborativi come le breakout rooms, per sviluppare strategie di
problem solving e il lavoro in team; laboratori virtuali collettivi, in cui il docente guida esperimenti, attivita pratiche o
I’analisi di casi di studio, rendendo I'apprendimento un’esperienza concreta e partecipativa; Tali attivita potranno
essere eventualmente supportate da strumenti asincroni di interazione come per esempio: forum; wiki; quiz; glossario.

Si prevede I'organizzazione di almeno due edizioni di didattica interattiva sincrona nel corso dell’anno accademico. Si
precisa che il ricevimento degli studenti, anche per le tesi di laurea, non rientra nel computo della didattica interattiva.

ATTIVITA DIDATTICA EROGATIVA (DE)

1

Le attivita di Didattica Erogativa consistono, per ciascun CFU, nell'erogazione di 5 videolezioni della durata di circa 30
minuti. A ciascuna lezione sono associati:

una dispensa (PDF) di supporto alla videolezione oppure l'indicazione di capitoli o paragrafi di un ebook di riferimento,
scelto dal docente tra quelli liberamente consultabili in piattaforma da studentesse e studenti; un questionario a
risposta multipla per I'autoverifica dell’apprendimento.

TESTO CONSIGLIATO

1/
Ingegneria del Software, 10 ed. lan Sommerville, Pearson

UML Distilled, 4 ed. Martin Fowler, Pearson

Applicare UML e Pattern - analisi e programmazione orientata a oggetti 5 ed. Craig Larman, Pearson.

Introduzione all’ingegneria del software moderna. lan Sommerville, Daniela Micucci, Pearson

Cay Horstmann, “Concetti di Informatica e Fondamenti di Java”, Settima Edizione, Apogeo Education, Maggioli Editore,
2020.

Si specifica che i testi consigliati sono solo per approfondimento volontario, e che essi non saranno oggetto specifico di
esame, essendo il modello didattico basato sull’utilizzo delle dispense del docente, soprattutto per la verifica in sede di
esame.

MODALITA DI VERIFICA DELL’APPRENDIMENTO

1**/

L'esame puo essere sostenuto sia in forma scritta che in forma orale. L’esame orale consiste in un colloquio con la
Commissione sui contenuti dell’insegnamento. L’esame in forma scritta consiste nello svolgimento di un test composto
da 31 domande. Per ogni domanda lo studente deve scegliere una delle 4 possibili risposte. Solo una risposta & corretta
e, in caso di risposte errate o0 mancanti, non sara attribuita alcuna penalita. Rispondendo correttamente a tutte le 31
domande, si conseguira la lode.

Oltre alla prova d’esame finale, il percorso prevede attivita di didattica interattiva sincrona e prove intermedie che
consentono alle studentesse e agli studenti di monitorare il proprio apprendimento, attraverso momenti di verifica
progressiva e consolidamento delle conoscenze.

La partecipazione alle attivita di didattica interattiva sincrona consente di maturare una premialita fino a 2 punti sul
voto finale, attribuiti in funzione della qualita della partecipazione alle attivita e dell’esito delle prove.

Per accedere alle prove intermedie € necessario aver seguito almeno il 50% di ogni ora di didattica interattiva. Le prove
intermedie possono consistere in un test di fine lezione o nella predisposizione di un elaborato. Le prove intermedie si
considerano superate avendo risposto correttamente ad almeno I’80% delle domande di fine lezione.

In caso di prove intermedie che prevedano la redazione di un elaborato, il superamento delle stesse ai fini della
premialita sara giudicata dal docente titolare dell'insegnamento. | punti di premialita, previsti per le prove intermedie,
sono sommati al voto finale d’esame solo se la prova d’esame e superata con un punteggio pari ad almeno 18/30 e
possono contribuire al conseguimento della lode.

Le modalita d’esame descritte sono progettate per valutare il grado di comprensione delle nozioni teoriche e la
capacita di applicazione delle stesse e consentiranno di valutare il livello di competenza e I'autonomia di giudizio

maturati dalla studentessa e dallo studente. Le abilita di comunicazione e la capacita di apprendimento saranno
valutate anche attraverso le interazioni dirette che avranno luogo durante la fruizione dell’'insegnamento.

RECAPITI

1**]
roberto.vergallo@unipegaso.it

fabiano.pecorelli@unipegaso.it

massimiliano.pirani@unipegaso.it

OBBLIGO DI FREQUENZA

¥/
A studentesse e studenti viene richiesto di partecipare ad almeno il 70% dell’attivita di didattica erogativa (70% della
TEL-DE).

AGENDA

1**]
Nella sezione Informazioni Appelli, nella home del corso, per ogni anno accademico vengono fornite le date degli appelli
d’esame.

Le attivita di didattica interattiva sincrona sono calendarizzate in piattaforma nella sezione Class.

Le attivita di ricevimento di studenti e studentesse sono calendarizzate nella sezione Ricevimento Online.

CALENDARIO

[**/
Calendario lezioni sincrone 2a edizione 2026:

Massimiliano Pirani UML: Diagrammi strutturali 04/02/2026 Ore 17.00 UML: Diagrammi comportamentali 04/02/2025
Ore 18.00

