PROGRAMMA DEL CORSO DI SCIENZA DELLE COSTRUZIONI

SETTORE SCIENTIFICO	
ICAR/08	
CFU	
9	

OBIETTIVI FORMATIVI PER IL RAGGIUNGIMENTO DEI RISULTATI DI APPRENDIMENTO PREVISTI NELLA SCHEDA SUA

Obiettivo del corso è quello di fornire agli studenti le conoscenze di base necessarie per affrontare in modo competente i problemi di meccanica strutturale più frequenti nell'ambito dell'ingegneria civile. Nello specifico, gli obiettivi formativi del corso sono:

Comprendere i concetti fondamentali della meccanica razionale, con particolare riferimento alla cinematica e alla statica dei sistemi rigidi. Analizzare il comportamento meccanico dei corpi continui e deformabili, con particolare attenzione al caso dei corpi a comportamento elastico lineare. Esaminare i metodi, gli approcci e le strategie per l'analisi di sistemi strutturali di media/piccola dimensione composti da elementi strutturali monodimensionali (es. telai, travi continue, travature reticolari). Valutare la capacità portante di un elemento strutturale al fine di perseguire le opportune verifiche di sicurezza nei confronti di azioni di progetto.

RISULTATI DI APPRENDIMENTO ATTESI

/**/

Conoscenza e capacità di comprensione:

Acquisire conoscenze metodologiche e operative relative alla meccanica strutturale, comprendendo i principi della statica e della cinematica dei sistemi rigidi, nonché i fondamenti della meccanica dei solidi continui e deformabili. Lo studente sarà in grado di:

- a) Comprendere i concetti alla base dell'analisi dei modelli di comportamento strutturale di elementi monodimensionali (travi, telai, reticolari) (Ob. 1, Ob.3)
- b) Conoscere le principali modalità di sollecitazione e deformazione (Ob. 2).
- c) Conoscere i criteri di resistenza e i metodi di verifica della sicurezza strutturale (Ob. 4).
- 2. Capacità di applicare conoscenza e comprensione

Utilizzare conoscenze teoriche per affrontare problemi reali nell'ambito dell'ingegneria strutturale. Lo studente sarà in grado di:

- a) Applicare i principi della meccanica razionale all'analisi di sistemi strutturali semplici (Ob. 1).
- b) Impostare e risolvere problemi di equilibrio, deformazione e resistenza in elementi strutturali soggetti a carichi esterni (Ob. 2).
- c) Utilizzare i metodi energetici e grafici per l'analisi e la verifica delle strutture (Ob. 3).
- d) Operare valutazioni quantitative in contesti reali, con attenzione alla sicurezza e alla funzionalità strutturale (Ob.4).

3. Autonomia di Giudizio

- a) Valutare criticamente le condizioni statiche di equilibrio nei sistemi rigidi e le ipotesi semplificative nei modelli strutturali (Ob. 1)
- b) Interpretare e analizzare le sollecitazioni e le deformazioni nelle strutture indotte ad azioni esterne (Ob. 2);
- c) Formulare giudizi autonomi sulla sicurezza e l'efficacia delle soluzioni adottate (Ob. 3);
- d) Interpretare e analizzare criticamente i risultati delle verifiche strutturali, formulando giudizi autonomi sulla sicurezza e l'affidabilità delle strutture analizzate (Ob.4);

4. Abilità comunicative

- a) Comunicazione chiara dei principi base della meccanica razionale, anche in ambito divulgativo (Ob. 1)
- b) Essere in grado di trasmettere concetti complessi relativi al comportamento meccanico dei materiali e delle strutture in modo comprensibile e accessibile a un pubblico non esperto (Ob.2);
- c) Presentare in modo chiaro e accurato i risultati delle analisi strutturali effettuate, fornendo interpretazioni significative e illustrando le conclusioni raggiunte attraverso grafici, tabelle o altre rappresentazioni visive (Ob. 3);
- d) Comunicare in modo chiaro e persuasivo i risultati delle verifiche strutturali effettuate (Ob .4);

5. Capacità di apprendimento

- a) Capacità di approfondire i fondamenti della meccanica razionale e la modellazione di sistemi rigidi (Ob. 1).
- b) Dimostrare la capacità di apprendere autonomamente, cercando e utilizzando risorse aggiuntive per approfondire la comprensione dei concetti e delle applicazioni della meccanica dei solidi (Ob. 2);
- c) Sviluppare la capacità di apprendere nuove tecniche e metodi di analisi strutturale, sfruttando risorse online, pubblicazioni scientifiche e altre fonti di informazione (Ob. 3);

Essere in grado di adattarsi a nuove normative e standard nel settore dell'ingegneria strutturale, comprendendo e applicando le ultime linee guida per la progettazione e la verifica strutturale (Ob. 4);

PROGRAMMA DIDATTICO: ELENCO VIDEOLEZIONI/MODULI

Modulo 1: Obiettivi della scienza delle costruzioni

Obiettivi della scienza delle costruzioni; modelli matematici di base adottati dalla scienza delle costruzioni.

Modulo 2: Elementi di meccanica razionale

Cinematica e statica della trave piana; Caratteristiche della sollecitazione; Analisi di travi e sistemi piani di travi piani isostatici.

Modulo 3: Elementi di meccanica del continuo

Analisi della tensione; i cerchi di Mohr; analisi della deformazione; il legame costitutivo; il problema elastico; i principi energetici.

Modulo 4: Il problema di Saint-Venant

Impostazione generale ed ipotesi fondamentali. Casi di sollecitazione: sforzo normale centrato; flessioni rette intorno agli assi principali d'inerzia; flessione deviata; presso e tenso-flessione; il problema del taglio; il problema della torsione.

Modulo 5: I criteri di resistenza

Modulo 6: Teoria della trave

La teoria tecnica della trave elastica; il Principio dei Lavori Virtuali (PLV); i metodi delle forze e delle deformazioni, Elementi di stabilità dell'equilibrio elastico;

Elenco delle videolezioni

Modulo 1: Obiettivi della scienza delle costruzioni.

1 La scienza delle costruzioni: scopi ed applicazioni

Modulo 2: Elementi di meccanica razionale

- 2 Studio algebrico della cinematica della trave piana.
- 3 Studio algebrico della statica della trave piana.
- 4 Calcolo delle caratteristiche della sollecitazione e le equazioni indefinite di equilibrio.
- 5 Analisi statica e cinematica della trave piana.
- 6 Risoluzione della trave piana isostatica ad asse rettilineo.
- 7 Studio algebrico della cinematica dei sistemi di travi.
- 8 Studio algebrico della statica dei sistemi di travi.
- 9 Studio grafico della cinematica delle strutture.
- 10 Calcolo delle caratteristiche della sollecitazione per i sistemi piani di travi.
- 11 Analisi di strutture Isostatiche: approccio grafico.
- 12 Approccio grafico per il tracciamento dei diagrammi delle caratteristiche della sollecitazione.
- 13 Analisi di strutture isostatiche: approccio tradizionale.
- 14 Le travature reticolari.

- 15 La geometria delle masse: il baricentro ed i momenti d'inerzia di una figura piana.
- 16 La geometria delle masse: proprietà inerziali di una figura piana.
- 17 La geometria delle masse: la circonferenza di Mohr, l'ellisse centrale d'inerzia, il nocciolo centrale d'inerzia.

Modulo 3: Elementi di meccanica del continuo

- 18 L'analisi della tensione: il problema tridimensionale
- 19 L'analisi della tensione: il problema piano e le condizioni di equilibrio
- 20 I cerchi di Mohr
- 21 L'analisi della deformazione: il problema delle deformazioni finite
- 22 L'analisi della deformazione: il problema delle deformazioni infinitesime
- 23 Il legame costitutivo
- 24 II problema elastico
- 25 Principi energetici per i continui tridimensionali

Modulo 4: Il problema di Saint-Venant

- 26 Il solido di Saint-Venant: introduzione al problema
- 27 Il solido di Saint-Venant: lo sforzo normale
- 28 Il solido di Saint-Venant: la flessione
- 29 Il solido di Saint-Venant: la flessione deviata
- 30 Il solido di Saint-Venant: la forza normale eccentrica
- 31 Solido di Saint-Venant: la torsione
- 32 Solido di Saint-Venant: la torsione nelle sezioni sottili
- 33 Solido di Saint-Venant: il taglio
- 34 Solido di Saint-Venant: la taglio nelle sezioni sottili

Modulo 5: I criteri di resistenza

- 35 I criteri di resistenza
- 36 I criteri di resistenza: esercitazione

Modulo 6: Teoria della trave

- 37 La teoria tecnica della trave: equazione differenziale della linea elastica flessionale
- 38 La teoria tecnica della trave: applicazioni
- 39 Il principio dei lavori virtuali per le travi elastiche
- 40 II metodo delle forze
- 41 II metodo delle forze: esercitazione
- 42 Il metodo delle deformazioni
- 43 Il metodo delle deformazioni: esercitazione
- 44 Stabilità dell'equilibrio elastico: sistemi discreti
- 45 Stabilità dell'equilibrio elastico: sistemi continui

ATTIVITÀ DIDATTICA INTERATTIVA (DI)

/**/

Le attività di Didattica Interattiva (TEL-DI) consistono, per ciascun CFU, in 2 ore erogate in modalità sincrona su piattaforma Class, svolte dal docente anche con il supporto del tutor disciplinare, e dedicate a una o più tra le seguenti tipologie di attività:

- sessioni live, in cui il docente guida attività applicative, stimolando la riflessione critica e il confronto diretto con gli studenti tramite domande in tempo reale e discussioni collaborative;
- webinar interattivi, arricchiti da sondaggi e domande dal vivo, per favorire il coinvolgimento attivo e la costruzione della conoscenza;
- lavori di gruppo e discussioni in tempo reale, organizzati attraverso strumenti collaborativi come le breakout rooms, per sviluppare strategie di problem solving e il lavoro in team;
- laboratori virtuali collettivi, in cui il docente guida esperimenti, attività pratiche o l'analisi di casi di studio, rendendo l'apprendimento un'esperienza concreta e partecipativa;

Tali attività potranno essere eventualmente supportate da strumenti asincroni di interazione come per esempio:

- forum;
- · wiki;
- quiz;
- glossario.

Si prevede l'organizzazione di almeno due edizioni di didattica interattiva sincrona nel corso dell'anno accademico. Si precisa che il ricevimento degli studenti, anche per le tesi di laurea, non rientra nel computo della didattica interattiva.

ATTIVITÀ DIDATTICA EROGATIVA (DE)

/**/

Le attività di Didattica Erogativa consistono, per ciascun CFU, nell'erogazione di 5 videolezioni della durata di circa 30 minuti. A ciascuna lezione sono associati:

- una dispensa (PDF) di supporto alla videolezione oppure l'indicazione di capitoli o paragrafi di un ebook di riferimento, scelto dal docente tra quelli liberamente consultabili in piattaforma da studentesse e studenti;
- un questionario a risposta multipla per l'autoverifica dell'apprendimento.

TESTI CONSIGLIATI

/**/

Gli studenti che intendono approfondire le tematiche del corso, integrando le dispense e i materiali forniti dal docente, possono consultare i seguenti volumi:

Corradi Dell'Acqua L., Meccanica delle strutture. Vol. 1: Il comportamento dei corpi continui. McGraw-Hill Education. Corradi Dell'Acqua L., Meccanica delle strutture. Vol. 2: Le teorie strutturali e il metodo degli elementi finiti. McGraw-Hill Education. Corradi Dell'Acqua L., Meccanica delle strutture. Vol. 3: La valutazione della capacità portante. McGraw-Hill Education. Viola E., Lezioni di Scienza delle costruzioni. Società Editrice Esculapio Viola E., Esercitazioni di Scienza delle costruzioni. Vol.1: Strutture isostatiche e geometria delle masse. Società Editrice Esculapio Viola E., Esercitazioni di Scienza delle costruzioni. Vol.2: Strutture iperstatiche e verifiche di resistenza. Società Editrice Esculapio Sollazzo A.,

Ricciuti U., Scienza delle costruzioni 1, Statica dei sistemi rigidi. UTET. Dell'Isola F. Placidi L., Esercizi di Statica dei Sistemi Meccanici e Scienza delle Costruzioni. Società Editrice Esculapio. Ogden, J.T., Mechanics of elastic structures. McGraw-Hill Education. Anand L., Govindjee S., Continuum Mechanics of Solids. Oxford University Press

MODALITÀ DI VERIFICA DELL'APPRENDIMENTO

/**/

L'esame può essere sostenuto sia in forma scritta che in forma orale. L'esame orale consiste in un colloquio con la Commissione sui contenuti dell'insegnamento. L'esame in forma scritta consiste nello svolgimento di un test composto da 31 domande. Per ogni domanda lo studente deve scegliere una delle 4 possibili risposte. Solo una risposta è corretta e, in caso di risposte errate o mancanti, non sarà attribuita alcuna penalità. Rispondendo correttamente a tutte le 31 domande, si conseguirà la lode.

Oltre alla prova d'esame finale, il percorso prevede attività di didattica interattiva sincrona e prove intermedie che consentono alle studentesse e agli studenti di monitorare il proprio apprendimento, attraverso momenti di verifica progressiva e consolidamento delle conoscenze.

La partecipazione alle attività di didattica interattiva sincrona consente di maturare una premialità fino a 2 punti sul voto finale, attribuiti in funzione della qualità della partecipazione alle attività e dell'esito delle prove.

Per accedere alle prove intermedie è necessario aver seguito almeno il 50% di ogni ora di didattica interattiva. Le prove intermedie possono consistere in un test di fine lezione o nella predisposizione di un elaborato. Le prove intermedie si considerano superate avendo risposto correttamente ad almeno l'80% delle domande di fine lezione.

In caso di prove intermedie che prevedano la redazione di un elaborato, il superamento delle stesse ai fini della premialità sarà giudicata dal docente titolare dell'insegnamento. I punti di premialità, previsti per le prove intermedie, sono sommati al voto finale d'esame solo se la prova d'esame è superata con un punteggio pari ad almeno 18/30 e possono contribuire al conseguimento della lode.

Le modalità d'esame descritte sono progettate per valutare il grado di comprensione delle nozioni teoriche e la capacità di applicazione delle stesse e consentiranno di valutare il livello di competenza e l'autonomia di giudizio maturati dalla studentessa e dallo studente. Le abilità di comunicazione e la capacità di apprendimento saranno valutate anche attraverso le interazioni dirette che avranno luogo durante la fruizione dell'insegnamento.

Per l'espletamento delle prove è ammesso l'utilizzo di calcolatrici, fogli bianchi o ulteriori ausili.

RECAPITI

Prof. Arturo Pascuzzo: arturo.pascuzzo@unipegaso.it

Prof. Carlo Olivieri: carlo.olivieri@unipegaso.it

Prof. Andrea Pranno: andrea.pranno@unipegaso.it

Prof. Luca Placidi: luca.placidi@unipegaso.it

OBBLIGO DI FREQUENZA

/**/

A studentesse e studenti viene richiesto di partecipare ad almeno il 70% delle attività di didattica erogativa. Per l'accesso alla prova d'esame è, inoltre, necessaria la redazione di un elaborato giudicato sufficiente dal docente titolare dell'insegnamento".

PREREQUISITI

Risulta essenziale una buona conoscenza di concetti di analisi matematica.

AGENDA

Nella sezione Informazioni Appelli, nella home del corso, per ogni anno accademico vengono fornite le date degli appelli d'esame.

Le attività di didattica interattiva sincrona sono calendarizzate in piattaforma nella sezione Class.